
Real Time Operating Systems

Dongbing Gu

School of Computer Science and Electronic Engineering
University of Essex

UK

Spring 2018

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 1 / 55



Outline

1 Operating System, Process, and Thread

2 RTOS

3 Interprocess Communication

4 RMS and EDF Scheduling

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 2 / 55



Section 1

Operating System, Process, and Thread

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 3 / 55



Operating System

An operating system is a program that

Provides an “abstraction” of the physical machine
Provides a simple interface to the machine
Each part of the interface is a “service”

An OS is also a resource manager

The OS provides access to the physical resources of a computing
machine
The OS provides abstract resources (for example, a file, a virtual page
in memory, etc.)

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 4 / 55



Levels of Abstraction

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 5 / 55



Abstraction Mechanism

Application programming interface (API) provides a convenient and
uniform way to access to services

HW details are hidden to the high level programmer

One application does not depend on the HW

The programmer can concentrate on higher level tasks.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 6 / 55



Process

The fundamental concept in any operating system is the “process”

A process is an executing program
An OS can execute many processes at the same time (concurrency)

Processes have separate memory spaces

Each process is assigned a private memory space
One process is not allowed to read or write in the memory space of
another process
If a process tries to access a memory location not in its space, an
exception is raised, and the process is terminated
Two processes cannot directly share variables

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 7 / 55



Memory of A Process

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 8 / 55



Threads

One process can consists of one or more threads

Threads are sometime called lightweight processes

Therefore, one process can have many different (and concurrent)
traces of execution.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 9 / 55



Multi-threaded process model

One address space

One PCB (Process Control
Blocks)

Many stacks

Many TCB (Thread Control
Blocks)

The threads are scheduled
directly by the scheduler

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 10 / 55



Multi-threaded process model

Generally, processes do not share memory

To communicate between process, it is necessary to user OS primitives
Process switch is more complex because we have to change address
space

Two threads in the same process share the same address space

They can access the same variables in memory
Communication between threads is simpler
Thread switch has less overhead

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 11 / 55



Section 2

RTOS

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 12 / 55



RTOS

Different OS implement threads in different ways: processes only,
threads only, or both.

In Real-Time Operating Systems, depending on the size and type of
system we can have both threads and processes or only threads

For efficiency reasons, most RTOS only support : one process and
many threads inside the process

Examples are RTAI, RTLinux, VxWorks, QNX, etc.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 13 / 55



Thread Control Block

Each thread is assigned a TCB (Thread Control Block)
The PCB holds mainly information about memory
The TCB holds information about the state of the thread

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 14 / 55



Thread States

Each thread, during its lifetime can be in one of the following states:

Starting - the thread is being created
Ready - the thread is ready to be executed
Executing - the thread is executing
Blocked - the thread is waiting on a condition
Terminating - the thread is about to terminate

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 15 / 55



Thread Events

a Creation - The thread is created

b Dispatch - The thread is selected to execute

c Preemption - The thread leaves the processor

d Wait on condition - The thread is blocked on a condition

e Condition true - The thread is unblocked

f Exit - The thread terminates

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 16 / 55



Context Switch

Context switch happens when

The thread has been preempted by another higher priority thread
The thread blocks on some conditions
In time-sharing systems, the thread has completed its “round” and it is
the turn of some other threads

We must be able to restore the thread later. Therefore we must save
its state before switching to another thread

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 17 / 55



RTOS Kernel

An RTOS consists of a scheduler that supports round-robin and
pre-emptive multitasking of program threads, as well as time and
memory management services.

Inter-task communication is supported by additional RTOS primitives
(objects), including event, semaphore, Mutex, mailbox, etc.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 18 / 55



Creating Threads

The first thread created is used to start additional threads required
for the application.

The first thread can launch the thread and assigns its thread ID
number and priority.

A thread can be created in response to a system event.

When a thread is created, it is also assigned its own stack for storing
data during the context switch.

This stack is a fixed block of RAM, which holds all the thread
variables.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 19 / 55



RTOS Interrupt Handling

While it is possible to run C code in an interrupt service routine
(ISR), this is not desirable within an RTOS based application.

The ISR could delay the timer tick and disrupts the RTOS kernel.

It is still good practice to keep the time spent in interrupts to a
minimum.

Some microcontrollers support nested interrupts. The nested
interrupts has unpredictable stack requirements.

Interrupt handling can also be accomplished by prioritised threads,
which are scheduled by the scheduler.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 20 / 55



Thread Scheduling

Preemptive vs. non-preemptive scheduling

Periodic vs. aperiodic threads

Fixed priority vs. dynamic priority

Priority inversion

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 21 / 55



Preemptive Scheduling

Assumptions:

All threads have priorities, either statically assigned (constant for the
duration of the thread) or dynamically assigned (can vary).
Kernel keeps track of which threads are enabled (able to execute).

Preemptive scheduling:

At any instant, the enabled thread with the highest priority is executing.
Whenever any thread changes priority, the kernel can dispatch a new
thread.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 22 / 55



Non-Preemptive scheduling: Round Robin

Time slices are assigned to each thread in equal portions and in
circular order,

Handling all threads without priority.

Round-robin scheduling is simple, and easy to implement.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 23 / 55



Time Sharing Systems

Every process can execute for at most one round, for example, 10msec

At the end of the round, the processor is given to another process

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 24 / 55



Time Sharing Systems

In Cortex M3, the RTOS uses the System Tick timer to switch the
threads.

Each switch time , the RTOS saves the state of all the thread
variables to a thread stack and stores the runtime information about
a thread in a Thread Control Block.

The “context switch time”, the time to save the current thread state
and load up and start the next thread, is a crucial value.

In practice, OS context switch overhead is small (hundreds of clock
cycles).

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 25 / 55



Preemptive Scheduling Problem

The need to share resources between threads operating in a
preemptive multitasking environment can create conflict.

Two of the most common problems are deadlock and priority
inversion.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 26 / 55



Deadlock

Deadlock occurs when some threads are blocked to acquire resources
held by other blocked threads.

To avoid deadlock:
Don’t request another resource while holding one resource.
Don’t wait for another thread if there’s a chance it’s waiting for you.
Try to avoid holding locks for longer time.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 27 / 55



Priority Inversion

A thread with lower priority gets a lock.

When a higher-priority thread becomes ready, it preempts the lower
priority thread.

If the higher-priority thread needs that lock, it can’t get it due to the
lower priority thread has it.

That means lower-priority thread blocks the higher-priority one. It
prevents higher-priority thread from running.

The solution is “Priority Inheritance”: temporarily increase the
thread’s priority whenever it acquires a lock that is also needed by a
higher-priority thread.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 28 / 55



Section 3

Interprocess Communication

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 29 / 55



Interprocess communication

We need to be able to communicate between threads in order to
make an application useful.

A typical RTOS supports several different communication objects,
which can be used to link the threads together to form a meaningful
program.

The mbed RTOS supports inter-task communication with signals,
semaphores, mutexes, queues, memory pools, and mails.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 30 / 55



Semaphore

Particularly useful to manage thread access to a pool of shared
resources of a certain type, for example, the access to a group of
identical peripherals can be managed.

Threads can request access to the resource (decrementing the
semaphore),

and can signal that they have finished using the resource
(incrementing the semaphore).

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 31 / 55



Mutex

Mutex (mutual exclusion)

are typically used to serialise access to a section of code that cannot be
executed concurrently by more than one thread.
A mutex object only allows one thread into a controlled section, forcing
other threads which attempt to gain access to that section to wait until
the first thread has exited from that section.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 32 / 55



Signal

The Signal class allows to control or wait signal flags. Each thread
has assigned signal flags.

Public member functions: set(), get(), clear(), wait()

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 33 / 55



Queue

A Queue allows you to queue pointers to data from producer threads
to consumer threads:

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 34 / 55



Memory Pool

The MemoryPool class is used to define and manage fixed-size
memory pools.

Public member functions: MemoryPool(), alloc(), free()

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 35 / 55



Mail

A Mail works like a queue with the added benefit of providing a
memory pool for allocating messages (not only pointers):

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 36 / 55



Section 4

RMS and EDF Scheduling

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 37 / 55



Rate Monotonic Scheduling

n threads invoked periodically with:
periods T1, . . . ,Tn (impose real-time constraints, or deadlines)
worst-case execution times (WCET) C1, . . . ,Cn

fixed priorities
preemptive scheduling

Rate Monotonic Scheduling: priorities ordered by period (smallest
period has the highest priority)

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 38 / 55



Feasibility for RMS

Feasibility is defined for RMS to mean that every thread executes to
completion once within its designated period.

If any priority assignment produces a feasible schedule, then RMS also
produces a feasible schedule.

RMS is optimal in the sense of feasibility.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 39 / 55



Scheduling metrics

How do we evaluate a scheduling policy?

Ability to satisfy all deadlines.
CPU utilisation - percentage of time devoted to useful work.
Scheduling overhead - time required to make scheduling decision.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 40 / 55



RMS Summary

RMS: widely-used for real-time systems, analysable scheduling policy.

All threads run periodically on single CPU.

Assuming zero context switch time.

No data dependencies between threads.

Thread execution time is constant.

Deadline is at end of period.

Highest-priority ready thread is always selected for execution.

The thread with the shortest period is assigned the highest priority.

This fixed priority scheduling policy is optimal, which ensures that all
threads meet their deadlines.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 41 / 55



RMS example

P1 has the highest priority, P2 has the middle priority, and P3 has the
lowest priority.

Construct the shortest repeating cycle equal in length to the least
common multiply of the thread periods.

Thread Execution time Period

P1 1 4
P2 2 6
P3 3 12

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 42 / 55



RMS example

Considering the following different set of execution times for these
threads.

Thread Execution time Period

P1 2 4
P2 3 6
P3 3 12

Is the RMS scheduling feasible?

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 43 / 55



Rate-monotonic analysis

Ci is execution time of thread i ; Ti is period of thread i .
Ci
Ti

is the CPU utilisation of thread i .

The schedulability test for RMS is:

U =
n∑

i=1

Ci

Ti
≤ n(2

1
n − 1)

For a set of n periodic threads, a feasible schedule that will always
meet deadlines exists if the CPU utilisation is below a specific bound.

Liu, C.L. and Layland, J.W. “Scheduling Algorithms for
Multi-Programming in a Hard Real-Time”. Journal of the Association
for Computing Machinery Vol. 20, 1 (January 1973), pp. 46-61.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 44 / 55



Rate-monotonic analysis

For a set of two threads P1 and P2 under RMS scheduling, the CPU
utilisation

U =
C1

T1
+

C2

T2
≤ 2(2

1
2 − 1) = 0.83

When the number of threads tends towards infinity, the CPU
utilisation converges to the bound:

lim
n→∞

n(2
1
n − 1) = ln 2 = 0.69

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 45 / 55



Rate-monotonic analysis

The schedulability test is only sufficient, not necessary!

Three possible outcomes:

U ≤ n(2
1
n − 1): schedulable

n(2
1
n − 1) < U <= 1: no conclusion

1 < U : overload, some threads will fail to meet their deadlines no
matter what algorithms you use!

The test may be too conservative.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 46 / 55



RMS CPU utilisation

RMS cannot use 100% of CPU, even with zero context switch
overhead.

Must keep idle cycles available to handle the worst-case scenario.

However, RMS guarantees all threads will always meet their deadlines.

No fixed-priority scheme does better.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 47 / 55



RMS implementation

The implementation of RMS (RMS scheduler) is very simple.

It runs at a timer interrupt.

The code scans through the list of threads in the priority order and
select the highest priority ready thread to run.

Because the priorities are static, the threads can be sorted by priority
in advance.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 48 / 55



Earliest-deadline-first scheduling

EDF: dynamic priority scheduling scheme.

Thread closest to its deadline has highest priority.

Requires recalculating priorities at every timer interrupt.

EDF can use 100% of CPU.

Generally considered too expensive to use in RTOS.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 49 / 55



Earliest-deadline-first scheduling

τ1 = (1, 4), τ2 = (2, 6), τ3 = (3, 8)

Utilisation U = 1
4 + 2

6 + 3
8 = 23

24

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 50 / 55



RMS scheduling

τ1 = (1, 4), τ2 = (2, 6), τ3 = (3, 8)

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 51 / 55



Earliest-deadline-first scheduling

Fully utilise the processor, less idle times;

If U ≤ 1, then it is schedulable by EDF.

In particular, EDF can schedule all threads that can be scheduled by
RMS, but not vice versa

In general, EDF has less context switches

EDF is not provided by any commercial RTOS, because of some
disadvantage:

Less predictable (The response time in EDF is variable). Look at the
response time of thread 1 in the example.
Less controllable (the priority is not controlled easily). In RMS, the
response time of a thread can be fixed by assigning a high priority.
More overhead for scheduling. RMS only needs an timer interrupt, but
EDF requires more, such as keep the track of deadlines.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 52 / 55



EDF Overhead Case U > 1

All threads missed their deadline almost at the same time

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 53 / 55



RMS Overhead Case U > 1

Only lower priority threads miss their deadlines!

However, it may happen that some threads never executes in case of
high overload, while EDF is more fair (all threads are treated in the
same way)

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 54 / 55



Fixing scheduling problems

What if your set of threads is unschedulable?

Change deadlines in requirements.
Reduce execution times of threads.
Get a faster CPU.

D. Gu (Univ. of Essex) Real Time Operating Systems Spring 2018 55 / 55


	Operating System, Process, and Thread
	RTOS
	Interprocess Communication
	RMS and EDF Scheduling

