
Memory in Embedded Systems

Dongbing Gu

School of Computer Science and Electronic Engineering
University of Essex

UK

Spring 2018

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 1 / 48

Outline

1 Memory Technologies

2 Memory Management

3 Program Memory Model

4 External Memories

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 2 / 48

Section 1

Memory Technologies

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 3 / 48

Volatile Memory

SRAM (static RAM)

Memory cell uses flip-flop to store bit
Requires 6 transistors
Holds data as long as power supplied

SRAM is faster than DRAM (dynamic RAM), but it is also larger
(each bit takes up more silicon area).

DRAM is tended to do the same thing as SRAM with a reduced
silicon area.

One bit is stored in a tiny capacitor.

Due to the small capability and leakage currents, the memory loses its
charge over a short period of time.

DRAM holds data for only a short time, so each memory location
must be periodically refreshed every few milliseconds.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 4 / 48

Basic MOS dynamic and static RAM memory cells

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 5 / 48

Memory Access

Stores large number of bits
m × n: m words of n bits each
k = log2m address input signals
m = 2k words

Memory access
r/w: selects read or write
enable: read or write only when asserted
multiport: multiple accesses to different locations simultaneously

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 6 / 48

Registers

The most tightly integrated memory in a processor is the registers.

The size of a word is a key property of a processor architecture.

The number of registers in a processor is usually small. This is not so
much the cost of the register hardware, but rather the cost of bits in
an instruction word.

Cortex-M3 core has 16 user-visible registers.

Three of these registers have dedicated functions, program counter
(PC), link register (LR), stack pointer (SP).

Processor Status Register (PSR) which is implicitly accessed by many
instructions.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 7 / 48

Non-Volatile Memory

The most basic non-volatile memory is ROM (read-only memory).

The contents of ROM is fixed at the chip factory. This can be useful
for mass produced products that only need to have a program and
constant data stored, and these data never change.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 8 / 48

Erasable Programmable ROM (EPROM)

Uses floating-gate transistor in each cell.

Programmer uses higher-than-normal voltage so electrons tunnel into
the gate.

Electrons become trapped in the gate.

Only done for cells that should store 0, Other cells will be 1.

To erase, a specified device is required: shine ultraviolet light onto
chip to give trapped electrons energy to escape.

Requires chip package to have window.

EPROM had become widely used, but was replaced by flash memory.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 9 / 48

EEPROM and Flash

EEPROM (electrically-erasable programmable ROM): the write time
is typically much longer than the read time, and the number of writes
is limited during the lifetime of the device. Erasing one word at a
time electronically.

Flash memory erases whole blocks at any one time.

Huge advantage: they are very high density.

Flash memories have reasonably fast read times, but not as fast as
SRAM and DRAM, so frequently accessed data will typically have to
be moved from the flash to RAM.

The write times are much longer than the read times, and the total
number of writes are limited.

It is primarily used in main memory, memory cards, USB flash drives,
solid-state drives, and similar products.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 10 / 48

Storage permanence

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 11 / 48

Cortex M3 On chip Memory

On-chip Flash memory system: 512 kB of on-chip flash memory can
be used for both code and data storage

On-chip Static RAM (SRAM): 64 kB of on-chip static RAM memory.
32 kB of SRAM, accessible by the CPU and DMA (direct memory
access) controller are on a higher speed bus.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 12 / 48

Section 2

Memory Management

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 13 / 48

Memory Latency

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 14 / 48

Embedded Memory Components

Most microprocessors combine different memory technologies to
increase the overall memory capacity while optimising cost, latency,
and energy consumption.

Typically, a relatively small amount of on-chip SRAM will be used
with a larger amount of off-chip DRAM.

The application programmer may not be aware that memory is
fragmented across these technologies.

The operating system and/or the hardware provides address
translation, which converts logical addresses in the address space to
physical locations in one of the available memory technologies.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 15 / 48

Embedded Memory Components

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 16 / 48

Cortex-M3 Memory Address Space

Cortex-M3 has a single “physical” address space of 232 bytes (4 GB).

The SRAM and peripheral areas are accessed through the system bus.

The “Code” region is accessed through the ICode (instructions) and
DCode (constant data) buses.

Predefined memory map

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 17 / 48

Cortex-M3 Memory Map

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 18 / 48

Cortex-M3 Memory Map

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 19 / 48

Memory Caches

Some memories are accessed before others.

The close memory duplicates data in the distant memory with the
hardware automatically handling the copying to and from, then it is
called a cache.

Cache memory is RAM that a microprocessor can access more quickly
than it can access regular RAM.

For embedded applications with tight real-time constraints, cache
timing behaviour can vary substantially.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 20 / 48

Memory Caches

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 21 / 48

ARM Memory Caches

Level 1 (L1) cache is extremely fast but relatively small, and is usually
embedded in the processor chip (CPU).

Level 2 (L2) cache is often more capacious than L1; it may be located
on the CPU or on a separate chip.

Level 3 (L3) cache is typically specialized memory that works to
improve the performance of L1 and L2. It can be significantly slower
than L1 or L2, but is usually double the speed of RAM. In the case of
multicore processors, each core may have its own dedicated L1 and L2
cache, but share a common L3 cache.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 22 / 48

ARM Memory Caches

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 23 / 48

Cortex-A7 Memory

L1 Cache

Instruction Cache (I-Cache): 32-bytes cache line
Data Cache (D-Cache): 64-bytes cache line

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 24 / 48

Raspberry Pi2 - Memory Architecture

Broadcom BCM2836 SoC

CPU: Quad-core Cortex-A7: L1 and L2 cache
GPU: VideoCore IV Processor: exclusive memory system
Main Memory: 1GB RAM : Shared by CPU and GPU

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 25 / 48

Cache operation overview

CPU requests contents of memory location

Check cache for this data

If present, get from cache (fast)

If not present, read required block from main memory to cache

Then deliver from cache to CPU

Cache includes tags to identify which block of main memory is in
each cache slot

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 26 / 48

Cache Performance

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 27 / 48

Direct Memory Access (DMA)

A direct memory access (DMA) is an operation in which data is
transported from one resource to another resource in a computer
system without the involvement of the CPU.
The task of a DMA controller is to execute the copy operation of
data from one resource location to another.

I/O-device to memory
memory to I/O-device
memory to memory
I/O-device to I/O-device

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 28 / 48

DMA channels

DMA consists of several channels which may be individually
configured with a transfer mode, source and destination memory
address.

Each channel can also be set to trigger on a DMA request from a
specific peripheral.

LPC1768 has 8 DMA channels (32 bits). The operations can be
performed in either burst or single-cycle mode.

In burst mode, the DMA controller keeps control of the bus until all
the data buffered by the requesting device has been transferred to
memory.

In single-cycle mode, the DMA controller gives up the bus after each
transfer. This requires that the bus request/acknowledge sequence be
performed for every transfer. This overhead can result in a drop in
overall system throughput.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 29 / 48

Cortex M3 DMA Channel Configuration

Channel Descriptors: Each DMA channel has two associated channel
descriptor structures. These include the source and destination
address for the channel as well as information on number of elements
to transfer, data size, transfer type etc.

DMA Register: Common configurations for the DMA, as well as
DMA interrupts and trigger sources.

Registers in trigger peripherals: The DMA request signals from the
peripherals are generated in the peripherals, hence it is important to
configure the peripherals correctly to generate the desired DMA
requests.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 30 / 48

Memory Protection Unit (MPU)

Cortex-M3 has an Memory Protection Unit (MPU).

Allows access rules to be set up for privileged access and user
program access.

MPU can be used in various ways:

Set up by an operating system, allowing data used by privileged code
(e.g., the operating system kernel) to be protected from untrusted user
programs
Can be used to make memory regions read-only, to prevent accidental
erasing of data, or to isolate memory regions between different tasks in
a multitasking system

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 31 / 48

Section 3

Program Memory Model

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 32 / 48

Local, Global and Static memory

A local variable is one that occurs within a specific scope. They exist
only in the function where they are created.

A global variable is a variable that is defined outside all functions and
available to all functions.

In local variables, static is used to store the variable in the statically
allocated memory instead of the automatically allocated memory.

Statically allocated memory (global or static) is typically reserved in
data segment of the program at compile time.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 33 / 48

Program Memory Map

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 34 / 48

Stack

A stack is a region of memory that is dynamically allocated to the
program in a last-in, first-out (LIFO) pattern.

A stack pointer (typically a register) contains the memory address of
the top of the stack.

When an item is pushed onto the stack, the stack pointer is decreased
and the item is stored at the new location referenced by the stack
pointer.

When an item is popped off the stack, the item referenced by the
stack pointer is (typically) copied into a register and the stack pointer
is increased.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 35 / 48

Stack

It stores types of variables that have a fixed lifetime - local variables

The stack is relatively small. It is generally not a good idea to do
anything that eats up lots of stack space.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 36 / 48

Heap

The heap segment keeps track of memory used for dynamic memory
allocation.

The heap starts from lower memory, growing up into higher memory.

In C, when you use the new operator to allocate memory, this
memory is allocated in the heap segment.

Allocated memory stays allocated until it is specifically deallocated or
the application ends (at which point the OS should clean it up).

Because the heap is a big pool of memory, large arrays, structures, or
classes can be allocated here.

i n t *ptr = new i n t ; // p t r i s a s s i g n e d 4 by t e s i n the heap
i n t *array = new i n t [1 0] ; // a r r a y i s a s s i g n e d 40 by t e s i n ←↩

the heap

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 37 / 48

Heap

A program can at any time request (malloc or new in C) that the
operating system allocate additional memory.

Heap can keep the track of which portions of memory are in use by
which application.

When the program no longer needs access to memory that has been
so allocated, it frees the memory (by calling free in C).

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 38 / 48

Memory Leak

A garbage collector is a task that runs either periodically or when
memory gets tight.

It automatically frees any portions of memory that are no longer
referenced.

With or without garbage collection, it is possible for a program to
inadvertently accumulate memory that is never freed.

This is known as a memory leak.

The program will eventually fail when physical memory is exhausted.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 39 / 48

Section 4

External Memories

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 40 / 48

I2C EEPROM 24LC256

The Microchip Technology Inc. 24LC256: 32K x 8 (256 Kbit).

It has a page write capability of up to 64 bytes of data.

It is capable of both random and sequential reads up to the 256K
boundary.

Up to eight devices on the same bus, for up to 2 Mbit address space.

5 ms max. write cycle time

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 41 / 48

Processor and I2C EEPROM

Three pins to configure the device address (A0, A1 and A2).
Usually, these pins are hard-wired to high and/or low levels.
To control these pins with a microcontroller, these pins are driven to
0 or 1 levels before access to the memory.
WP pin is used to write-protect.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 42 / 48

I2C EEPROM Write Operations

This memory has two write modes: byte write and page write.

In byte write mode:

set the address position where you want to write,
the next byte will be the data that you want to store.
finally, send the Stop condition.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 43 / 48

I2C EEPROM Write Operations

The 32KB address is from 0x0000 to 0x7FFF.

15 bits to address.

The sequence to access consists in:

Generate the Start condition in the I2C bus (SDA low, then SCL low).
Send the device address (0x00 or ox01 in above example)
Send the high byte of the address to access
Send the low byte of the address to access.
the next byte will be the data that you want to store.
finally, send the Stop condition.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 44 / 48

I2C EEPROM write operation

#define EEPROM1_WR 0xA0 // 24LC256 Address to w r i t e
#define EEPROM1_RD 0xA1 // 24LC256 Address to read
cha r buf [2] ;
buf [0]=0 x01 ;
buf [1]=0 x00 ;
buf [2]=0 xAA ;
I2C i2c (p27 , p28) ;
i2c . write (EEPROM1_WR , buf , 3) ;

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 45 / 48

SD cards on the mbed

SD Cards are widely used by devices for storage; phones, mp3 players,
pc’s etc.
SD cards support SPI protocols.
SD Cards are block devices. That means you read/write data in
multiples of the block size (usually 512-bytes).
A file system SDFileSystem is an abstraction on top of the SPI
protocol.

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 46 / 48

SD cards on the mbed

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 47 / 48

Data files on the mbed

#include ”mbed . h”
#include ” SDFi leSystem . h”

SDFileSystem sd (p5 , p6 , p7 , p8 , ” sd ”) ;

i n t main () {
mkdir (”/ sd /mydir ” , 0777) ;

FILE *fp = fopen (”/ sd / s d t e s t . t x t ” , ”w”) ;
i f (fp == NULL) {

error (”Could not open f i l e f o r w r i t e \n”) ;
}
fprintf (fp , ” He l l o fun SD Card World ! ”) ;
fclose (fp) ;

}

D. Gu (Univ. of Essex) Memory in Embedded Systems Spring 2018 48 / 48

	Memory Technologies
	Memory Management
	Program Memory Model
	External Memories

