
Embedded Networking

Dongbing Gu

School of Computer Science and Electronic Engineering
University of Essex

UK

Spring 2018

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 1 / 30

Outline

1 UART Serial Port

2 SPI Bus

3 I2C Bus

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 2 / 30

Introduction

In the non-embedded world, TCP/IP over Ethernet, WiFi, etc.
dominates.

No single embedded network or network protocol dominates.

Many TCP/IP features unnecessary or undesirable in embedded
networks.

Reliability of individual packets is important as opposed to building
reliability with retransmission.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 3 / 30

OSI model

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 4 / 30

A Few Embedded Networks

Low-end: SPI, I2C, RS-232, RS485

Medium-end: CAN, Modbus, Profibus.

High-end: Ethernet, Profinet.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 5 / 30

Network from a High End Car

Some new cars contain more than 3 miles of wire

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 6 / 30

Section 1

UART Serial Port

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 7 / 30

UART Serial Port

Universal asynchronous receiver transmitter (UART) : provides serial
communication.

Allows many communication parameters to be programmed (using
the UART’s Control register).

UARTs are a standard port in microcontrollers.

In the RS-232 standard’s simplest implementation, only three wires
are used in the cable.

One wire is used to transmit data (TD), one to receive data (RD) and
one to connect the signal ground (GND).

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 8 / 30

Serial Communication

Bits are transmitted separately, one at a time, as a sequence of bits.

For example, an n-bit character would be sent as a sequence of bits.

An extra Parity Bit may be added to the end of the sequence as a
check for transmission errors.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 9 / 30

Serial Communication Parameters

The parameters are set initially, before the peripheral interface is
used, by setting appropriate bit patterns in one or more control
registers associated with the serial port.

Baud (bit) rate.
Number of bits per character: Usually 8 data bits, although 5, 6 and 7
are allowed.
The START bit is always low and forces a transition from line idle to
indicate a new data byte.
Parity/no parity: optional, indicates ODD or EVEN bit parity in the
data byte
Length of stop bit (1, 1.5, 2 bits):The STOP bit is always high and
forces the line idle state at the end of the transmission

Today, data rate can range as high as 115.2 kbits/s. Typical data
rates are 1200, 2400, 4800, 9600, 19,200, 38,400, and 115,200 bits/s.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 10 / 30

Serial Communication Parameters

Besides the synchronization provided by the use of start and stop bits,
a parity bit may optionally be transmitted along with the data.

It helps detect data corruption that might occur during transmission.

When even or odd parity is being used, the number of marks (logical
1 bits) in each data byte are counted, and a single bit is transmitted
following the data bits to indicate whether the number of 1 bits just
sent is even or odd.

For example, when even parity is chosen, the parity bit is transmitted
with a value of 0 if the number of preceding marks is an even number,
or with a value 1 if the number of preceding marks is an odd number.

Parity error checking is very rudimentary. While it will tell you if there
is a single bit error in the character, it doesn’t show which bit was
received in error. Also, if an even number of bits are in error then the
parity bit would not reflect any error at all.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 11 / 30

UART on the mbed

#i n c l u d e ”mbed . h”
Serial pc (USBTX , USBRX) ;
i n t main () {

pc . baud (19200) ;
pc . printf (” He l l o World !\ n”) ;
wh i l e (1) {

pc . putc (pc . getc () + 1) ;
}

}

#i n c l u d e ”mbed . h”
DigitalOut led1 (LED1) ;
DigitalOut led2 (LED2) ;
Serial pc (USBTX , USBRX) ;
v o i d callback () {

printf (”%c\n” , pc . getc ()) ;
led2 = ! led2 ;

}
i n t main () {

pc . attach(&callback) ;
wh i l e (1) {

led1 = ! led1 ;
wait (0 . 5) ;

}
}

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 12 / 30

RS-485

The RS-485 standard specifies differential signalling on two lines
rather than single-ended with a voltage referenced to ground. A logic
1 is a level smaller than -200 mV, and a logic 0 is a level greater than
+200 mV.

Typical line voltage levels from the line drivers are a minimum of ±
1.5 V to a maximum of about ± 6 V.

The differential format produces effective common-mode noise
cancellation

The standard transmission medium is twisted-pair wire.

Data rates up to 10 Mbit/s and distances up to 1,200 m.

RS-485 is not a protocol, it’s simply an electrical interface.

TX+/RX+ or D+ as alternative for B (high for MARK i.e. idle).
TX-/RX- or D- as alternative for A (low for MARK i.e. idle).

SC is the common signal reference ground.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 13 / 30

RS-485

The standard has not defined a specific communication protocol. The
standard UART protocol is sometimes used. Most applications define
a unique protocol.

The standard does not define specific connectors. Various connection
methods have been used, including the RS-232 DE-9 connector.

It is widely used in industrial applications where higher speeds and
longer distances are needed. It is used in the same type of equipment
as defined for the RS-232 interface. Networks defined by field buses
like Profibus and Modbus use it as well.

RS-232 for low-speed over short-distance. RS-485 for higher speeds
over longer ranges with duplex networking capability.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 14 / 30

Section 2

SPI Bus

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 15 / 30

SPI Characteristics

Very local area - designed for communicating with other chips on the
same PCB, such as DAC, flash memory, etc.

Full-duplex.

Low / medium bandwidth.

Master / slave.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 16 / 30

SPI Connection

SPI has the following four signal lines: Serial Clock (SCKL), Chip
Enable or Select (CS), Serial Data Input (SDI), Serial Data Output
(SDO).

The microprocessor drives the CS and SCKL signal lines. SPI slave
devices get their clock and chip select input from microprocessor.

Whenever an SPI device is not selected, its SDO output line is
tri-stated.

SPI interface hardware contains shift registers. One shift register is
used to send out data and another shift register is used to receive
data.

The clocks are all synchronous and they use SCKL.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 17 / 30

Multiple SPI devices

Typical SPI master with multiple SPI slaves connection

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 18 / 30

SPI Transfer

Master selects a slave by configuring the SPI interface and writing a
byte into the SPI data register.

Transfer begins at the next clock edge

Eight bits transferred in each direction

Waiting for transfer to finish by checking the SPI flag

Read SPI status register and data register

Master deselects the slave

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 19 / 30

SPI Problems

No sophisticated addressing for more slaves.

No flow control

No acknowledgements

No error detection / correction

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 20 / 30

SPI on the mbed

The SPI Interface can be used on pins p5/p6/p7 and p11/p12/p13.

Default settings of the SPI interface on the mbed:

Default clock frequency of 1 MHz
Default data length of 8 bits
Default mode of 0 (see page 120 in the recommended book “Fast and
efficient embedded systems design”)

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 21 / 30

SPI on the mbed

#i n c l u d e ”mbed . h”
#i n c l u d e ”TextLCD . h”
SPI sw (p5 , p6 , p7) ;
DigitalOut cs (p8) ;

i n t main () {
cs=0;
sw . format (16 ,0) ;
sw . frequency (1000000) ;
wh i l e (1) {

sw . write (0 x0000) ;
cs = 1 ; cs=0;
wait (1) ;
sw . write (0 x5555) ;
cs = 1 ; cs=0;
wait (1) ;
sw . write (0 xAAAA) ;
cs = 1 ; cs=0;
wait (1) ;
sw . write (0 xFFFF) ;
cs = 1 ; cs=0;
wait (1) ;

}
}

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 22 / 30

Section 3

I2C Bus

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 23 / 30

I2C Connection

Designed for low-cost, medium data rate applications, generally
limited to 400Kbps.

An I2C bus has only two signal wires, SCL and SDA.

SCL functions as a clock line and SDA can function as a 1-bit serial
data line or as a 1-bit serial address line.

A common ground is of course also required.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 24 / 30

I2C Protocol

I2C devices are either masters or slaves.

Slaves respond to requests from the master.

An I2C slave device is assigned a unique 7-bit I2C bus address.

When a microprocessor (master) needs to communicate with an slave,
it sends out a start sequence.

To stop an I2C sequence, the microprocessor sends out a stop
sequence.

A start sequence is the only time SDA goes high to low while SCL is
high and a stop sequence is the only time SDA goes low to high while
SCL is high.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 25 / 30

I2C Data Format

Each address and data transfer contains a total of nine bits.

8-data bits with an acknowledge bit (ACK) used for handshaking.

The bits are sent out in high to low order, one per clock.

Seven address bits are used and the final eighth bit is a read/write
(R/W) bit.

The slave sends the last acknowledge (ACK) bit in each address and
data transfer.

ACK low indicates the slave is ready.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 26 / 30

I2C Transaction

Master issues a START condition (First pulls SDA low, then pulls
SCL low)

Master writes an address to the bus.

Plus a bit indicating whether it wants to read or write
Slaves that don’t match address don’t respond
A matching slave issues an ACK by pulling down SDA

Either master or slave transmits one byte

Receiver issues an ACK
This step may repeat

Master issues a STOP condition

First releases SCL, then releases SDA
At this point the bus is free for another transaction

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 27 / 30

SPI and I2C

The SPI and I2C standards both provide excellent support for
communication with low-speed devices on the same PCB.

SPI is perhaps a better choice for applications that need to transfer
higher bandwidth data streams that do not require address
information, such as A/D and D/A converters.

I2C requires addressing (2-wire bus), so the hardware is more
complicated.

SPI bus is a 3+n wire bus, n is the number of slave devices

Some general purpose microcontrollers include I2C and SPI interfaces.

Two or three bits on a GPIO port can be also used with the
appropriate software driver to implement an SPI or I2C interface.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 28 / 30

I2C on the mbed

TMP102 temperature sensor TMP102 data sheet

First send a data byte of 0x01 to specify that the Pointer Register is
set to the Configuration Register.

Send two bytes of data to perform the configuration, which is 0x60A0.

Then send a data byte of 0x00 to specify that the Pointer Register is
set to the Temperature Register.

Read the 12-bit data in the temperature register.

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 29 / 30

http://www.ti.com/lit/ds/sbos397b/sbos397b.pdf

I2C on the mbed

#include ”mbed . h”
I2C tempsensor (p9 , p10) ;
Serial pc (USBTX , USBRX) ;
con s t i n t addr = 0x90 ;
cha r config_t [3] ;
cha r temp_read [2] ;
f l o a t temp ;

i n t main () {
config_t [0] = 0x01 ;
config_t [1] = 0x60 ;
config_t [2] = 0xA0 ;
tempsensor . write (addr , config_t , 3) ;
wait (0 . 5) ;
config_t [0] = 0x00 ;
tempsensor . write (addr , config_t , 1) ;
wh i l e (1) {

wait (1) ;
tempsensor . read (addr , temp_read , 2) ;
temp = ((temp_read [0]<<8)+temp_read [1]) / 256 . 0 ;
pc . printf (”Temp = %.2 f degC\n\ r ” , temp) ;

}
}

D. Gu (Univ. of Essex) Embedded Networking Spring 2018 30 / 30

	UART Serial Port
	SPI Bus
	I2C Bus

