
Formalisms for System Design

Dongbing Gu

School of Computer Science and Electronic Engineering
University of Essex

UK

Spring 2018

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 1 / 64

Outline

1 Embedded System Design Process

2 Visual Modelling Language UML

3 Structure diagrams

4 Behaviour Diagrams

5 Example: Model Train Controller
Conceptual Specification
Detailed Specification

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 2 / 64

Section 1

Embedded System Design Process

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 3 / 64

Design Methodologies

Process for creating a complex systems.

everyone has a design process in mind when designing an embedded
system;
multiple designer team demands a design process.

Many systems are complex:

large specifications;
multiple designers;
interface to manufacturing.

Proper design processes improve:

quality;
cost of design and manufacture.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 4 / 64

Design Goals

Functionality and user interface.

Performance - overall speed, etc.

Manufacturing cost.

Power consumption.

Design cost for a few copies is different with mass market.

Time-to-market:

beat competitors to market;
meet marketing window.

Other requirements (physical size, etc.)

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 5 / 64

Levels of Abstraction

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 6 / 64

Top-down vs. Bottom-up

Top-down design:

start from most abstract description; work to most detailed.

Bottom-up design:

work from small components to big system.

Real design uses both techniques.

May be partially or fully automated, such as using software tools to
transform, verify design.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 7 / 64

Requirements

Requirements: informal description of what customer wants using
plain language.

Specification: precise description of what design team should deliver.

Requirements phase links customers with designers.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 8 / 64

Types of requirements

Functional: input/output relationships.

Non-functional:

timing: time required to compute output;
power consumption;
manufacturing cost;
physical size, weight, etc.;
time-to-market;
reliability.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 9 / 64

Creating Requirements

Customer interviews.

Comparison with competitors.

Sales feedback, talking to marketing representatives;

Prototypes, providing prototypes to users for comment;

Next-bench syndrome: the engineers are most comfortable designing
products for their colleagues sitting next to them.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 10 / 64

Requirements

Five different influences that can generate requirements during the
design of an embedded system:

Stakeholders (end-users, customers, managers, engineers, maintenance
experts, and certification bodies).
Technical constraints
Industry standards
Quality assurance
Sales and Marketing

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 11 / 64

Good requirements

Correct

Unambiguous

Complete (all requirements should be included)

Consistent: requirements do not contradict each other.

Verifiable: is each requirement satisfied in the final system?

Modifiable: shall be structured, and can update requirements easily.

Traceable:

know why each requirement exists;
go from source documents to requirements;
go from requirement to implementation;
back from implementation to requirement.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 12 / 64

Requirements Form

Name Assignment 1

Purpose

Inputs

Outputs

Functions

Performance

Manufacture costs

Physical size/weight

Power

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 13 / 64

Specifications

A more precise description of the system, should provide input to the
architecture design process.

Capture functional and non-functional properties, need to verify the
correctness

Many specification styles:

control-oriented vs. data-oriented;
textual vs. graphical.

May be executable or may be in mathematical form for proofs.

UML is one specification and design language

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 14 / 64

Architecture Design

What major components satisfy the specification?

Hardware components: CPUs, peripherals, etc.

Software components: major programs and their operations.

Must take into account functional and non-functional specifications.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 15 / 64

Architecture Design - CRC cards

Well-known method for analysing a system and developing an
architecture.

CRC stands for the following three major items:

Classes define the logical groupings of data and functionality.
Responsibilities describe what the classes do.
Collaborators are other classes with which a given class works.

CRC is a team-oriented methodology:

It is used to turn specification into architecture design.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 16 / 64

CRC cards

They are physical cards held by members of the team.

Group members write these cards, talk about them, and update the
cards until they are satisfied with the results.

All team members understand all parts of the system and how they
interact, and to reveal any deficiencies in the current design.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 17 / 64

Component Design and System Integration

Designing hardware and software components.

Must spend time designing the system before you start coding.
Some components are ready-made, some can be modified from existing
designs, others must be designed from scratch.

System integration

Put together the components. Many bugs appear only at this stage.
Have a plan for integrating components to uncover bugs quickly, test
as much functionality as early as possible.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 18 / 64

Example: GPS Moving Map

Moving map obtains position (Latitude and Longitude) from GPS,
paints map from local database.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 19 / 64

Example: GPS Moving Map Requirements

Functionality:

For automotive use. Show roads and other landmarks available.

User interface:

At least 400 × 600 pixel screen.
Three buttons, a menu should pop-up when buttons pressed to allow
user’s selection.

Performance:

Map should scroll smoothly.
No more than 1 sec power-up. verify and display GPS information
within 15 seconds.

Cost: less than £100 shop price - about £40 cost of hardware.

Physical size/weight: Should fit in dashboard.

Power consumption: Current draw comparable to CD player.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 20 / 64

GPS Moving Map Requirements Form

Name GPS moving map

Purpose consumer-grade moving map for driving

Inputs power button, two control buttons

Outputs back-lit LCD 400 × 600

Functions receiver; 3 user selectable resolutions;
displays current lat/long

Performance updates screen within 0.25 sec of movement

Manufacture costs £40

Physical size/weight no more than 2 × 6 inches, 12 oz

Power 100mW

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 21 / 64

GPS Specification

what is received from GPS;

map data;

user interface;

operations required to satisfy user requests;

background operations needed to keep the system running.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 22 / 64

GPS Moving Map Block Diagram

Block diagram: major operations and data flows among them.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 23 / 64

Section 2

Visual Modelling Language UML

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 24 / 64

System Modelling - UML

Modelling is an essential part of embedded system design.

Models help at a higher level of abstraction by hiding or masking
details, bringing out the big picture, or by focusing on different
aspects of the prototype.

Unified Modelling Language (UML) is a standard visual modelling
language.

Built on fundamental Object-Oriented concepts including class and
operation, it’s a natural fit for object-oriented languages and
environments.

UML is typically used as a part of software development process. It
can be also used for embedded system development process.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 25 / 64

Object-Oriented (OO) Design

It encourages the design to be described as a number of interacting
objects.

At least some of those objects will correspond to real pieces of
software or hardware in the systems.

Some objects will closely correspond to real-world objects. Some
objects may be useful only for description or implementation.

Objects provide interfaces to read/write state, hiding the object’s
implementation from the rest of the system.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 26 / 64

UML 2.0

UML 2.0 defines thirteen types of diagrams, divided into three
categories: Six diagram types represent static structure; three
represent general types of behaviour; and four represent different
aspects of interactions:

Structure Diagrams include the Class Diagram, Object Diagram,
Component Diagram, Composite Structure Diagram, Package
Diagram, and Deployment Diagram.
Behaviour Diagrams include the Use Case Diagram; Activity Diagram,
and State Machine Diagram.
Interaction Diagrams, all derived from the more general Behaviour
Diagram, include the Sequence Diagram, Communication Diagram,
Timing Diagram, and Interaction Overview Diagram.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 27 / 64

Section 3

Structure diagrams

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 28 / 64

Structure diagram - Class diagram

A class is a classifier which describes a set of objects that share the
same features, constraints, semantics (meaning).

Features of a class are attributes and operations.

Class diagram shows structure of the designed system at the level of
classes, and shows their features, constraints and relationships.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 29 / 64

Class Diagram - Generalisation

UML allows to define one class from another.

A derived class inherits all the attributes and operations from its base
class.

UML considers inheritance to be one form of generalisation, shown
with a hollow triangle as an arrowhead.

Example: BW display and Colour map display are specific versions of
Display. Display generalises both of them.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 30 / 64

Multiple inheritance

UML allows to define multiple inheritance, in which one class from
more than one base class.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 31 / 64

Class diagram - Association

Association is a relationship between classes.

It is drawn as a solid line connecting two classes. Name of the
association can be shown somewhere near the middle of the
association line.

A number at the ends shows the multiplicity.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 32 / 64

Structure diagram - Object diagram

Object diagram is instance level class diagram which shows instance
specifications of classes.
It shows a snapshot of the detailed state of a system at a point in
time.
Objects of a class must contain values for each attribute.
All objects derived from the same class have the same attributes, but
may have different attribute values.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 33 / 64

Section 4

Behaviour Diagrams

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 34 / 64

Behaviour Diagrams - State Machine Diagram

Behaviour diagrams show the dynamic behaviour of the system, which
can be described as a series of changes to the system over time.
State machine diagram shows discrete behaviour of a part of designed
system through finite state transitions.
Behaviour is modelled as a graph of state nodes connected with
transitions.
Transitions are triggered by the occurrence of events.
An event may come from inside or outside of the system.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 35 / 64

Types of events

Signal: asynchronous event, defined by an object in UML.

Call event: synchronised communication, such as a procedure call in a
programming language.

Time-out event: causes the machine to leave a state after a certain
amount of time.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 36 / 64

Example State Machine Diagram

State models a situation during which some conditions hold, such as
waiting for some external event to occur.
State is shown as a rectangle with rounded corners and the state
name inside the rectangle.
An initial state is shown as a small solid filled circle.
A final state is shown as a circle surrounding a small solid filled circle.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 37 / 64

Example State Machine Diagram

Draw a finite state machine diagram for an embedded system that
controls the car seat belt. If the driver turns on the key, and does not
fasten the seat belt within 5 seconds, then an alarm beeps for 10
seconds, or until the driver fastens the seat belt, or until the driver
turns off the key.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 38 / 64

Example State Machine Diagram

Draw a finite state machine diagram for an embedded system that
controls the car seat belt. If the driver turns on the key, and does not
fasten the seat belt within 5 seconds, then an alarm beeps for 10
seconds, or until the driver fastens the seat belt, or until the driver
turns off the key.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 38 / 64

State Machine Diagram Limitations

Scalability - Number of states and transitions increase exponentially
as the system complexity increases

No concurrency support

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 39 / 64

Sequence Diagram

Sequence diagram focuses on the message interchange between a
number of lifelines.

Lifeline represents an individual participant in the interaction.

A lifeline is shown using a symbol that consists of a rectangle forming
its “head” followed by a vertical line that represents the lifetime of
the participant.

Usually the head is a rectangle containing name of class and object.

Execution represents a period in the participant’s lifetime when it is
executing a unit of behaviour or action within the lifeline.

Execution is represented as a thin rectangle on the lifeline.

Message occurrence represents such events as sending and receiving
of signals or invoking and receiving of operation calls.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 40 / 64

Sequence Diagram

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 41 / 64

Section 5

Example: Model Train Controller

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 42 / 64

Model Train Setup

Using this example to follow a design through several levels of
abstraction, and gain experience with UML.

The user sends messages to train with a control box attached to
tracks.

The message is modulated on the power supply voltage. The train is
powered by the two rails of the track.

The train senses the message and control the speed and direction.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 43 / 64

Requirements

The console can control 8 trains on 1 track.

The speed should be controllable by a throttle to at least 63 levels in
each direction.

Inertia control allows the user to adjust responsiveness of the train to
commanded changes in speed with at least 8 levels.

Emergency stop button.

Error detection scheme on messages.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 44 / 64

Requirements form

Name Model train controller

Purpose Control speed of up to eight model trains

Inputs Throttle, inertia setting; emergency stop;
train number

Outputs Train control signals

Functions Set engine speed based on inertia setting;
emergency stop

Performance Update train speed at least 10 times per sec

Manufacture cost £50

Physical size/weight Console comfortable for 2 hands;
less than 2 pounds

Power 10W (plugs into wall)

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 45 / 64

Conceptual specification

Before creating a detailed specification, an initial and simplified
specification allows us to understand the system a litter better.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 46 / 64

Basic System Commands

The message determines what the controller can do.

Defining the message first will help us understand the functionality of
the components.

command name parameters

set-speed speed (positive/negative)
set-inertia inertia value (nonnegative)
Estop none

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 47 / 64

Typical Control Sequence

Then consider how the console controls the train by sending the
message over the track.

The console can send the message at any time.

Set-inertia message is less frequently than set-speed message.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 48 / 64

Message Classes

The message class can be modelled into two level class hierarchy.

One is the base class: Command.

Three subclasses derived from Command.

Attributes and operations will be filled in for detailed specification.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 49 / 64

Subsystems

There are two major subsystems: console and receiver.

The basic relationship is shown in UML.

Console:

read state of front panel;

format messages;

transmit messages.

Train Receiver:

receive message;

interpret message;

control the train.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 50 / 64

Console System Classes

Panel class: describes the console’s front panel, including analogue
knobs and interface hardware.
Formatter class: includes operations that know how to read the panel
knobs and creates a bit stream.
Transmitter class: interfaces the analogue electronics to send data on
track.
Numeric values show the number of instances of the classes.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 51 / 64

Receiver System Classes

Receiver class: reads digital signals from track.

Controller class: interprets received commands and makes control
decisions.

Motor interface class: generates signals required by motor.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 52 / 64

Detailed Specification

We can now fill in the details of the conceptual specification with
attributes and operations.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 53 / 64

Refined Command Classes

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 54 / 64

Train speed control

Motor controlled by Pulse Width Modulation:

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 55 / 64

Physical Object Classes

The Panel has three knobs: train number, speed, and inertia, and one
button: emergency stop.
The Knob class specifies each of them and provides a set-knob
operation that allows the rest of the system to modify the knob
setting.
The Sender and the Detector classes simply put out and pick up a bit.
The Pulser class defines an integer to specify the speed and a
separate binary for motor direction.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 56 / 64

Panel and Motor Interface Classes

The Panel class defines a behaviour for each of the controls on the
panel. (new-settings() uses the set-knob operation of the Knob class
to change the knob setting.)

The Motor-interface class defines the motor speed.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 57 / 64

Transmitter and Receiver Classes

The Transmitter class has one operation for each type of message
sent.
The Receiver class provides methods to:

detect a new message;
determine its type;
read its parameters

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 58 / 64

Formatter Class

The Formatter class holds state for each train, setting for current
train.

operate() performs the basic formatting task.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 59 / 64

Controller Class

The Controller class has operate() which is called by the Receiver
when it gets a new command, and issue-command() which changes
the speed, inertia settings.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 60 / 64

Formatter Operate() Behaviour

State machine for a very simple version of operate().

This operation checks the panel. If a train number changes, it
updates the panel display, otherwise it sends the required message.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 61 / 64

Formatter Panel-Active() Behaviour

State machine for the panel-active operation.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 62 / 64

Sequence Diagram for Control Input

The Formatter periodically calls the Panel.

Once a change is detected, a send-command is sent to the
Transmitter.

If a train number is changed, the Formatter must cause the knob
setting to be reset a proper value.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 63 / 64

Sequence Diagram for set-speed command

The Controller operate() must determine the nature of the message

Once the speed command has been parsed, it must send a sequence
of commands to the motors to smoothly change the speed.

D. Gu (Univ. of Essex) Formalisms for System Design Spring 2018 64 / 64

	Embedded System Design Process
	Visual Modelling Language UML
	Structure diagrams
	Behaviour Diagrams
	Example: Model Train Controller
	Conceptual Specification
	Detailed Specification

