
Embedded Processors

Dongbing Gu

School of Computer Science and Electronic Engineering
University of Essex

UK

Spring 2018

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 1 / 53

Outline

1 Microprocessors

2 mbed NXP LPC1768

3 I/O Architectures

4 Interruption Mechanisms

5 DSP Processors

6 FPGAs

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 2 / 53

Section 1

Microprocessors

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 3 / 53

Introduction

In general-purpose computing, the Intel x86 architecture
overwhelmingly dominating all.

There is no such dominance in embedded computing.

On the contrary, the variety of processors can be daunting to a
system designer.

We provide some brief descriptions on microprocessors, DSPs, and
FPGAs.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 4 / 53

Microprocessors

A microprocessors is a small computer on a single integrated circuit
consisting of a relatively simple central processing unit (CPU)
combined with peripheral devices such as memories, I/O devices, and
timers.

The simplest microprocessors operate on 8-bit words.

They may consume extremely small amounts of energy, and often
include a sleep mode that reduces the power consumption to
nanowatts.

Embedded components such as sensor network nodes and surveillance
devices can operate on a small battery for several years.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 5 / 53

Microprocessors

Some of the architectures are quite old. The Motorola 6800 and Intel
8080 are 8-bit microcontrollers that appeared on the market in 1974.

Descendants of these architectures survive today, for example, in the
form of the Freescale 6811.

Another very popular architecture is the Intel 8051, an 8-bit
microcontroller developed by Intel in 1980.

The 8051 ISA is today supported by many vendors (Atmel, Infineon
Technologies, Dallas Semiconductor, NXP, ST Microelectronics,
Texas Instruments, and Cypress Semiconductor)

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 6 / 53

Harvard Microprocessors

Early days, instruction set is made as advanced and sophisticated as
possible.

The computer hardware is more complex, expensive and slower.
Complex Instruction Set Computer (CISC)

One characteristic is that instructions have different levels of
complexity.

Simple instructions could one byte long and complex ones could be
several bytes long.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 7 / 53

Harvard Microprocessors

Harvard architecture has the program memory and data memory as
separate memories which are accessed from separate buses.
This improves bandwidth over traditional von Neumann architecture
in which program and data are fetched from the same memory using
the same bus.
RISC (Reduced Instruction Set Computer) processors are based on the
insight that simplified instructions can provide higher performance.
They have fixed and wide instruction size with few formats. Data
processing instructions operate only on registers, and can be very fast
(compared to CISC).

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 8 / 53

RISC Processor Features

One cycle execution time: RISC processors have a CPI (clock per
instruction) of one cycle. This is due to the optimisation of each
instruction on the CPU and a technique called pipelining. Each
instruction is contained within a single binary word.

Pipelining: a technique that allows for simultaneous execution of
parts, or stages, of instructions to more efficiently process instructions.
Every instruction takes the same amount of time to execute.

Large number of registers: the RISC design philosophy generally
incorporates a larger number of registers to prevent in large amounts
of interactions with memory.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 9 / 53

Microcontrollers

Many 32-bit microcontrollers implement some variant of an ARM
instruction set. (ARM originally stood for Advanced RISC Machine.)

Processors that implement the ARM ISA are widely used in mobile
phones and other systems.

Semiconductor vendors license the instruction set from ARM Limited
and produce their own chips, including Alcatel, Atmel, Broadcom,
Cirrus Logic, Freescale, LG, Marvell Technology Group, NEC,
NVIDIA, NXP, Samsung, Sharp, ST Microelectronics, Texas
Instruments, VLSI Technology, Yamaha, and others.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 10 / 53

Section 2

mbed NXP LPC1768

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 11 / 53

mbed NXP LPC1768

NXP LPC1768 is an ARM Cortex-M3 based microcontroller.

Designed for prototyping all sorts of devices, including Ethernet, USB,
and the flexibility of lots of peripheral interfaces.

Includes a built-in USB FLASH programmer.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 12 / 53

ARM microcontroller development boards

A 32-bit ARM Cortex-M3 core running at 96MHz.

512KB flash, 64KB RAM

built-in Ethernet, USB Host and Device, CAN, SPI, I2C, ADC, DAC,
PWM and other I/O interfaces.

Provide experienced embedded developers a powerful and productive
platform for building proof-of-concepts.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 13 / 53

Block Diagram of mbed Architecture

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 14 / 53

The LPC1768 Microcontroller

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 15 / 53

Cortex M3 Core Registers

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 16 / 53

Section 3

I/O Architectures

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 17 / 53

Buses

Processor and I/O devices exchange data over a bus.

The Industry Standard Architecture (ISA) bus was introduced on the
first PCs by IBM in the early 1980s.

The ISA bus supports 8-bit and 16-bit data transfers.

PC/104 is an industrial version of this bus that is still used in some
embedded systems.

Later versions extended the ISA bus to a 32-bit bus called the
Extended Industry Standard Architecture (EISA).

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 18 / 53

Tri-State

Most bus signals are driven using tri-state logic devices.

Recall that tri-state logic has a third state that is high impedance or
not connected

A tri-state buffer has an extra control line that makes it act just like a
normal buffer or go to a high impedance (Z) state (i.e. disconnected).

This allows multiple devices to drive the bus, but only one at a time.

Only one device at a time ever turns on its tri-state control to force
its outputs to drive the bus signals high or low.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 19 / 53

I/O Registers

Usually includes a CONTROL REGISTER that is used to initialise the
peripheral’s mode of operation.

and a DATA REGISTER that is used to send the data to bus or read
the data from bus.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 20 / 53

Programming I/O

Peripheral device registers usually look like memory locations to the
program. This is called memory-mapped I/O.

memory-mapped load/store instructions.
I/O device registers are memory locations.

A section of the memory map is reserved for I/O devices

Most CPUs use memory-mapped I/O.

But Intel x86 CPU provides in, out instructions.

special-purpose I/O instructions (OUT < port >,< reg >)
I/O device registers have device identifier “address”.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 21 / 53

Memory map on the mbed

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 22 / 53

Memory-mapped I/O

The on-chip I/O registers can be accessed via the mbed header file
mbed.h.

The mbed API DigitalOut

#include ”mbed . h”
DigitalOut myled (LED1) ;
i n t main () {

wh i l e (1) {
myled=1;
wait (0 . 2) ;
myled=0;
wait (0 . 2) ;

}
}

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 23 / 53

DigitalOut API

The DigitalOut API component creates a C++ class, called
DigitalOut.

The class member functions include: DigitalOut, write, read, operator
=, and operator int().

myled=1; replace mylead.write(1);

External pins: 26 pins (pins 5-30) can be configured as digital inputs.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 24 / 53

DigitalIn API

The DigitalIn API component creates a C++ class, called DigitalIn.

The class member functions include: DigitalIn, read, mode, and
operator int().

mode PullUp, PullDown, PullNone

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 25 / 53

BusOut API

The BusOut API class allows you group a set of digital outputs into
one bus, so that you can write a digital word to it.

The BusOut Interface can be used on any pin with a blue label, and
also with the on-board LEDs (LED1-LED4).

The class member functions include: BusOut, write, read, operator
=, and operator int().

#include ”mbed . h”
BusOut display (p5 , p6 , p7 , p8 , p9 , p10 , p11 , p12) ;
i n t main () {

wh i l e (1) {
f o r (i n t i=0;i<4;i++){

ca se 0 display=0x3F ; b reak ;
. . .

}
}

}

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 26 / 53

Port API

The PortOut API is used to write to an GPIO port as one value.

The class member functions include: PortOut, write, read, operator
=, and operator int().

Port0-Port5 can be used.

#include ”mbed . h”

#define LED_MASK 0x00B40000
// LED1 = P1 .18 LED2 = P1 .20 LED3 = P1 .21 LED4 = P1 .23
PortOut ledport (Port1 , LED_MASK) ;

i n t main () {
wh i l e (1) {

ledport = LED_MASK ;
wait (1) ;
ledport = 0 ;
wait (1) ;

}
}

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 27 / 53

Timers

Four general purpose 32-bit timers.

One Interrupt Timer

One System Tick Timer

The class member functions include: start(),stop(), reset(), read(),
read ms(), read us()

#i n c l u d e ”mbed . h”

Timer t ;

i n t main () {
t . start () ;
printf (” He l l o World !\ n”) ;
t . stop () ;
printf (”The t ime taken was %f seconds \n” , t . read ()) ;

}

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 28 / 53

Timer Interrupts

Timer interrupt is set up by the Timeout class.

It allows an interrupt to call a function (ISR) after a specified delay

#i n c l u d e ”mbed . h”
Timeout flipper ;
DigitalOut led1 (LED1) ;
DigitalOut led2 (LED2) ;
v o i d flip () {

led2 = ! led2 ;
}
i n t main () {

led2 = 1 ;
flipper . attach(&flip , 2 . 0) ; // se tup f l i p p e r to c a l l f l i p ←↩

a f t e r 2 seconds
wh i l e (1) {

led1 = ! led1 ;
wait (0 . 2) ;

}
}

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 29 / 53

Section 4

Interruption Mechanisms

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 30 / 53

Pin Polling

Polling
Main loop uses each I/O device periodically.
If output is to be produced, produce it.
If input is ready, read it.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 31 / 53

Interrupt I/O

Interrupts

External hardware alerts the processor that input is ready.
Processor suspends what it is doing.
Processor invokes an interrupt service routine (ISR).
ISR interacts with the application.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 32 / 53

Interrupt I/O

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 33 / 53

Interrupt I/O

Port or pin “Polling” is very inefficient.

CPU can’t do other work while testing device;
Hard to do simultaneous I/O.

Interrupts allow a device to change the flow of control in the CPU.

Causes subroutine call to handle device.

When status register sets, it calls interrupt

CPU ends current instruction,
and then executes the device’s predefined subroutine.

In ISR you should avoid any call to wait, infinitive while loop, or
blocking calls in general.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 34 / 53

Interrupt I/O

Triggers:

A level change on an interrupt request pin.
Software interrupts, such as timer.

Responses:

Disable interrupts
Push the current program counter onto the stack.
Execute the instruction at a designated address in the program memory.

Design of interrupt service routine:

Save and restore any registers it uses.
Re-enable interrupts before returning from interrupt.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 35 / 53

Interrupt Vectors

Allow different devices to be handled by different codes.

Each device number is an OFFSET in this vector of addresses.

So the vector may be stored anywhere in main memory and the
device offset added to the vector (table)’s base address.

Interrupt vector table:

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 36 / 53

Interrupt on the LPC1768

Management of all the interrupts is undertaken by the Nested
Vectored Interrupt Controller (NVIC).

NVIC offers very fast interrupt handling and provides the vector table
as a set of real vectors (addresses).

Saves and restores automatically a set of the CPU registers (R0-R3,
R12, PC, PSR, and LR).

For Cortex M3, it has 33 interrupt sources and 32 possible priority
levels

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 37 / 53

InterruptIn API

The InterruptIn interface is used to trigger an event when a digital
input pin changes.
mbed NXP LPC1768: Any of the numbered mbed pins (p5-p30) can
be used as an InterruptIn, except p19 and p20.
The class member functions include InterruptIn, rise, fall, enable irq
(), disable irq ()

#include ”mbed . h”
InterruptIn button (p5) ;
DigitalOut led (LED1) ;
DigitalOut flash (LED4) ;
v o i d flip () {

led = ! led ;
}
i n t main () {

button . rise(&flip) ;
wh i l e (1) {

flash = ! flash ;
wait (0 . 2 5) ;

}
}
D. Gu (Univ. of Essex) Embedded Processors Spring 2018 38 / 53

Debugging interrupt code

Enabling interrupts could lead to problems in program execution.

ISR must save and restore any CPU registers it uses. If this is not
done properly then the foreground program can exhibit mysterious
bugs.

Bugs will be hard to repeat - depend on interrupt timing.

An advantage in using C is that the compiler can automatically
produce code to save and restore registers (so your ISR does not need
to).

You do need to reset the interrupt flag for the interrupting device, to
avoid continuous IRQs.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 39 / 53

Priorities and vectors

Two mechanisms allow us to make interrupts more specific:

Priorities determine which interrupt gets CPU first if several sources
request at the same time.
Vector determines what code is called for each type of interrupt.

Most CPUs provide both.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 40 / 53

Prioritized I/O

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 41 / 53

Concurrency in Computing

Interrupt Handling

Reacting to external events (interrupts)
Exception handling (software interrupts)

Processes

Creating the illusion of simultaneously running different programs
(multitasking)

Threads

How is a thread different from a process?

Multiple processors (multi-cores)

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 42 / 53

Section 5

DSP Processors

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 43 / 53

DSP Processors

Processors designed specifically to support numerically intensive signal
processing applications are called DSPs (digital signal processors).

They deal with large amounts of data.

They typically perform sophisticated mathematical operations on the
data, including filtering, system identification, frequency analysis,
machine learning, and feature extraction.

The combination of design elements: arithmetic operators, memory
handling, instruction set, parallelism, data addressing that provide this
ability forms the key difference between DSPs and other kinds of
processors.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 44 / 53

Typical DSP architecture

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 45 / 53

DSP architecture - Numeric Section

DSPs must complete multiply/accumulate, add, subtract, and/or
bit-shift operations in a single instruction cycle.

It is this hardware that distinguishes DSPs from general-purpose
microprocessors.

The MAC (multiplier-accumulator) performs sum-of-products
operations. ALU capabilities include addition, subtraction, and logical
operations. Operations on bits and words occur within the shifter.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 46 / 53

DSP architecture - Memory Section

Data and instructions must flow into the numeric and sequencing
sections of the DSP on every instruction cycle.

There can be no delays, no bottlenecks. Everything about the design
focuses on throughput.

In DSPs, memory is divided into program and data memory-with
separate busses for each - Harvard architecture.

Data address-generators (DAGs): reduce overhead and automatically
manage memory accesses.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 47 / 53

DSP architecture - Memory Section

Circular buffer: DSP algorithms usually require data in a range of
addresses (a buffer) to be addressed so that the address pointer
“wraps-around” from the end of the buffer back to the start of the
buffer (buffer length).

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 48 / 53

DSP architecture - Sequencer Section

The program sequencer needs to loop through the repeated code
without incurring overhead while getting from the end of the loop
back to the start of the loop.

DSPs perform these test and branch functions in hardware, storing
the needed addresses.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 49 / 53

DSP Processors

Several variants of the Harvard architecture; and addressing modes
supporting auto increment, circular buffers, and bit-reversed
addressing.

Most support fixed-point data precisions of 16-24 bits, typically with
much wider accumulators (40-56 bits).

A few DSPs have appeared with floating point hardware.

DSPs are difficult to program compared to normal microprocessors,
primarily because of complex specialised instructions and pipeline.

Until the late 1990s, these devices were almost always programmed in
assembly language. Even today, C programs make extensive use of
libraries that are hand-coded in assembly language.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 50 / 53

Section 6

FPGAs

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 51 / 53

FPGAs

A field-programmable gate array (FPGA) is an integrated circuit
designed to be configured by a customer or a designer after
manufacturing.

The FPGA configuration is generally specified using a hardware
description language (HDL).

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 52 / 53

FPGAs

FPGAs contain programmable logic components called “logic blocks”,
and a hierarchy of reconfigurable interconnects that allow the blocks
to be “wired together”

Logic blocks can be configured to perform complex combinational
functions, or merely simple logic gates like AND and XOR.

In most FPGAs, the logic blocks also include memory elements, which
may be simple flip-flops or more complete blocks of memory.

The ability to update the functionality after shipping, partial
re-configuration of a portion of the design and the low non-recurring
engineering costs offer advantages for many applications.

D. Gu (Univ. of Essex) Embedded Processors Spring 2018 53 / 53

	Microprocessors
	mbed NXP LPC1768
	I/O Architectures
	Interruption Mechanisms
	DSP Processors
	FPGAs

